Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate.
نویسندگان
چکیده
Bacteroides thetaiotaomicron can utilize a variety of polysaccharides, including charged mucopolysaccharides such as chondroitin sulfate (CS) and hyaluronic acid (HA). Since the enzymes (chondroitin lyases I and II) that catalyze the first step in breakdown of CS and HA are located in the periplasm, we had proposed that the first step in utilization of these polysaccharides was binding to one or more outer membrane proteins followed by translocation into the periplasm, but no such outer membrane proteins had been shown to play a role in CS or HA utilization. Previously we have isolated a transposon-generated mutant, CS4, which was unable to grow on CS or HA but retained the ability to grow on disaccharide components of CS. This phenotype suggested that the mutation in CS4 either blocked the transport of the mucopolysaccharides into the periplasmic space or blocked the depolymerization of the mucopolysaccharides into disaccharides. We have mapped the CS4 mutation to a single gene, csuF, which is capable of encoding a protein of 1,065 amino acids and contains a consensus signal sequence. Although CsuF had a predicted molecular weight and pI similar to those of chondroitin lyases, it did not show significant sequence similarity to the Bacteroides chondroitin lyase II, a Proteus chondroitin ABC lyase, or two hyaluronidases from Clostridium perfringens and Streptococcus pyogenes, nor was any CS-degrading enzyme activity associated with csuF expression in Bacteroides species or Escherichia coli. The deduced amino acid sequence of CsuF exhibited features suggestive of an outer membrane protein. We obtained antibodies to CsuF and demonstrated that the protein is located in the outer membrane. This is the first evidence that a nonenzymatic outer membrane protein is essential for utilization of CS and HA.
منابع مشابه
Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associat...
متن کاملKlotho Protein,A Biomarker for AKI
Klotho is an anti-aging single-pass membrane protein that is mainly produced in the kidney. The level of soluble klotho decreases with age and the klotho gene is associated with an increased risk of age-related diseases, such as diabetes, skin atrophy, chronic kidney disease, ataxia and cancer. The klotho gene is composed of five exons and encodes a membrane glycoprotein located in the plasma ...
متن کاملCloning and expression of Brucella outer membrane protein 36kDa (OMP2b) in E. coli
Background & Objective: Brucellosis is an important zoonotic disease of economic significance. Brucella species are gram-negative, facultative intracellular bacteria, and are capable of replicating in the phagosomes of macrophages. They cause infection in several animal species and humans. Prevention of new diseases and diagnosis of cases infected with the organism are both essential for eradic...
متن کاملEffects of zinc sulfate (ZnSO4) in diet on the growth performance and gene expression of Insulin-like growth factor-1 (IGF-1) and Ghrelin in goldfish (Carassius auratus)
The zinc element (Zn) is one of the micronutrients and an essential element of the body which has some deleterious and irreparable effects on growth in case of lack it. Thus, we aimed to assess IGF-1 in goldfish with Zn deficiency and to investigate the effect of Zn supplementation on these parameters. Goldfish (Carassius auratus) juvenile (3.5 g) were fed purified diets based on casein as ...
متن کاملImportance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 177 13 شماره
صفحات -
تاریخ انتشار 1995